33 research outputs found

    Assessing functional novelty of PSI structures via structure-function analysis of large and diverse superfamilies

    Get PDF
    The structural genomics initiatives have had as one of their aims to improve our understanding of protein function by providing representative structures for many structurally uncharacterised protein families. As suggested by the recent assessment of the Protein Structure Initiative (Structural Genomics Initiative, funded by the NIH), doubts have arisen as to whether Structural Genomics as initially planned were really beneficial to our understanding of biological issues, and in particular of protein function.
A few protein domain superfamilies have been shown to account for unexpectedly large numbers of proteins encoded in fully sequenced genomes. These large superfamilies are generally very diverse, spanning a wide range of functions, both in terms of molecular activities and biological processes. Some of these superfamilies, such as the Rossmann-fold P-loop nucleotide hydrolases or the TIM-barrel glycosidases, have been the subject of extensive structural studies which in turn have shed light on how evolution of the sequence and structure properties produce functional diversity amongst homologues. Recently, the Structure-Function Linkage Database (SFLD) has been setup with the aim of helping the study of structure-function correlations in such superfamilies. Since the evolutionary success of these large superfamilies suggests biological importance, several Structural Genomics Centers have focused on providing full structural coverage for representatives of all sequence families in these superfamilies.
In this work we evaluate structure/function diversity in a set of these large superfamilies and attempt to assess the quality and quantity of biological information gained from Structural Genomics.
&#xa

    CATHEDRAL: A Fast and Effective Algorithm to Predict Folds and Domain Boundaries from Multidomain Protein Structures

    Get PDF
    We present CATHEDRAL, an iterative protocol for determining the location of previously observed protein folds in novel multidomain protein structures. CATHEDRAL builds on the features of a fast secondary-structure–based method (using graph theory) to locate known folds within a multidomain context and a residue-based, double-dynamic programming algorithm, which is used to align members of the target fold groups against the query protein structure to identify the closest relative and assign domain boundaries. To increase the fidelity of the assignments, a support vector machine is used to provide an optimal scoring scheme. Once a domain is verified, it is excised, and the search protocol is repeated in an iterative fashion until all recognisable domains have been identified. We have performed an initial benchmark of CATHEDRAL against other publicly available structure comparison methods using a consensus dataset of domains derived from the CATH and SCOP domain classifications. CATHEDRAL shows superior performance in fold recognition and alignment accuracy when compared with many equivalent methods. If a novel multidomain structure contains a known fold, CATHEDRAL will locate it in 90% of cases, with <1% false positives. For nearly 80% of assigned domains in a manually validated test set, the boundaries were correctly delineated within a tolerance of ten residues. For the remaining cases, previously classified domains were very remotely related to the query chain so that embellishments to the core of the fold caused significant differences in domain sizes and manual refinement of the boundaries was necessary. To put this performance in context, a well-established sequence method based on hidden Markov models was only able to detect 65% of domains, with 33% of the subsequent boundaries assigned within ten residues. Since, on average, 50% of newly determined protein structures contain more than one domain unit, and typically 90% or more of these domains are already classified in CATH, CATHEDRAL will considerably facilitate the automation of protein structure classification

    Outlier detection of vital sign trajectories from COVID-19 patients

    Full text link
    There is growing interest in continuous wearable vital sign sensors for monitoring patients remotely at home. These monitors are usually coupled to an alerting system, which is triggered when vital sign measurements fall outside a predefined normal range. Trends in vital signs, such as an increasing heart rate, are often indicative of deteriorating health, but are rarely incorporated into alerting systems. In this work, we present a novel outlier detection algorithm to identify such abnormal vital sign trends. We introduce a distance-based measure to compare vital sign trajectories. For each patient in our dataset, we split vital sign time series into 180 minute, non-overlapping epochs. We then calculated a distance between all pairs of epochs using the dynamic time warp distance. Each epoch was characterized by its mean pairwise distance (average link distance) to all other epochs, with large distances considered as outliers. We applied this method to a pilot dataset collected over 1561 patient-hours from 8 patients who had recently been discharged from hospital after contracting COVID-19. We show that outlier epochs correspond well with patients who were subsequently readmitted to hospital. We also show, descriptively, how epochs transition from normal to abnormal for one such patient.Comment: 4 pages, 4 figures, 1 table. Submitted to IEEE BHI 2022, decision pendin

    Protein function annotation by homology-based inference

    Get PDF
    Where information on homologous proteins is available, progress is being made in automated prediction of protein function from sequence and structure

    FLORA: a novel method to predict protein function from structure in diverse superfamilies

    Get PDF
    Predicting protein function from structure remains an active area of interest, particularly for the structural genomics initiatives where a substantial number of structures are initially solved with little or no functional characterisation. Although global structure comparison methods can be used to transfer functional annotations, the relationship between fold and function is complex, particularly in functionally diverse superfamilies that have evolved through different secondary structure embellishments to a common structural core. The majority of prediction algorithms employ local templates built on known or predicted functional residues. Here, we present a novel method (FLORA) that automatically generates structural motifs associated with different functional sub-families (FSGs) within functionally diverse domain superfamilies. Templates are created purely on the basis of their specificity for a given FSG, and the method makes no prior prediction of functional sites, nor assumes specific physico-chemical properties of residues. FLORA is able to accurately discriminate between homologous domains with different functions and substantially outperforms (a 2–3 fold increase in coverage at low error rates) popular structure comparison methods and a leading function prediction method. We benchmark FLORA on a large data set of enzyme superfamilies from all three major protein classes (α, β, αβ) and demonstrate the functional relevance of the motifs it identifies. We also provide novel predictions of enzymatic activity for a large number of structures solved by the Protein Structure Initiative. Overall, we show that FLORA is able to effectively detect functionally similar protein domain structures by purely using patterns of structural conservation of all residues

    Mortality and pulmonary complications in patients undergoing surgery with perioperative sars-cov-2 infection: An international cohort study

    Get PDF
    Background The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (740%) had emergency surgery and 280 (248%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (261%) patients. 30-day mortality was 238% (268 of 1128). Pulmonary complications occurred in 577 (512%) of 1128 patients; 30-day mortality in these patients was 380% (219 of 577), accounting for 817% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 175 [95% CI 128-240], p&lt;00001), age 70 years or older versus younger than 70 years (230 [165-322], p&lt;00001), American Society of Anesthesiologists grades 3-5 versus grades 1-2 (235 [157-353], p&lt;00001), malignant versus benign or obstetric diagnosis (155 [101-239], p=0046), emergency versus elective surgery (167 [106-263], p=0026), and major versus minor surgery (152 [101-231], p=0047). Interpretation Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    The Management of Acute Upper Gastrointestinal Bleeding: A Comparison of Current Clinical Guidelines and Best Practice

    No full text
    Acute upper gastrointestinal bleeding (AUGIB) is the most common GI emergency, responsible for up to 70,000 hospital admissions in the UK and around 4,000 deaths. The latest UK national audit highlighted inconsistencies in both the management and service provision. Several national and international professional bodies have produced evidence-based recommendations on the management of AUGIB. We carried out a review of the guidance documentation published by four expert bodies including the National Institute of Clinical Excellence, the Scottish Intercollegiate Guidelines Network, the American College of Gastroenterology, and those published in the Annals of Internal Medicine. Consensus is still yet to be reached for initiating blood products in the emergency situation, with some evidence suggesting that liberal transfusion could exacerbate bleeding severity, although there is a lack of large randomised trials. It is widely agreed that prompt endoscopy within 24 hours improves outcomes, but evidence suggests that lowering this threshold confers no additional benefit. Use of proton pump inhibitors both pre and post-endoscopy for non-variceal bleeds is also advocated by professional bodies, with substantial evidence that it reduces the risk of re-bleeding. For patients with suspected oesophageal or gastric variceal bleeding, prophylactic antibiotics and vasopressin analogues are recommended, although guidelines vary on specific regimens. Recent UK and international guidelines provide a useful framework to guide management of patients who present to the emergency department with suspected AUGIB; however, their advice varies in some key areas due to a lack of large randomised trials as supporting evidence

    Night work for hospital nurses and sickness absence: a retrospective study using electronic rostering systems

    No full text
    There is conflicting evidence on the effect of night work on sickness absence. Most previous studies used self-reporting to identify shift patterns and measure levels of sickness absence. In contrast, this study used objective data from electronic rosters to explore the association of nurses’ patterns of night work and sickness absence. This was a retrospective longitudinal study of nurse roster data from 32 general medical and surgical wards in a large acute hospital in England. We used data from 3 years and included both registered nurses and unregistered nursing assistants. We used generalized linear-mixed models to explore the association between night work and the subsequent occurrence of sickness absence. Of 601,282 shifts worked by 1944 nursing staff, 38,051 shifts were lost due to sickness absence. After controlling for potential confounders including proportion of long (≥12 h) shifts worked, proportion of overtime shifts, proportion of shifts worked in the past 7 days, and staff grade, we found that staff working more than 75% of their shifts in the past 7 days as night shifts were more likely to experience sickness absence (aOR = 1.12; 95% CI: 1.03–1.21), compared to staff working on day only schedules. Sub-group analysis found that an association between a high proportion of night shifts worked and long-term sickness (aOR = 1.31; 95% CI: 1.15–1.50), but not short-term sickness. Working high proportions of night shifts, likely representing permanent night work schedules, is associated with a higher risk of long-term sickness absence for nurses working in inpatient adult wards in acute hospitals. The higher sickness absence rates associated with permanent night shifts could result in additional costs or loss of productivity for hospitals. This study challenges the assumption that permanent night schedules maximize circadian adjustment and, therefore, reduce health problems
    corecore